本文共 29722 字,大约阅读时间需要 99 分钟。
散篇记录就是,我自己觉得有需要记录一下以方便后来查找的内容,就记录下来。
Spark 2.1.0。
源码过程中所涉及的许多Scala的知识,完全可以参考之前Scala的笔记文章,应该来说确实很多知识内容都涉及到了。
SparkConf的源码相对不难,主要是对Spark本身要有所理解,同时Scala也应该要有所掌握,那么看起来就不太复杂,只看了比较核心的方法,整体有个思路,做了一些个人的备注,有些目前还没有涉及到的用法自然就不会先去看,这里作为记录。
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.sparkimport java.util.concurrent.ConcurrentHashMapimport scala.collection.JavaConverters._import scala.collection.mutable.LinkedHashSetimport org.apache.avro.{Schema, SchemaNormalization}import org.apache.spark.internal.Loggingimport org.apache.spark.internal.config._import org.apache.spark.serializer.KryoSerializerimport org.apache.spark.util.Utils/** * Configuration for a Spark application. Used to set various Spark parameters as key-value pairs. * * Most of the time, you would create a SparkConf object with `new SparkConf()`, which will load * values from any `spark.*` Java system properties set in your application as well. In this case, * parameters you set directly on the `SparkConf` object take priority over system properties. * * For unit tests, you can also call `new SparkConf(false)` to skip loading external settings and * get the same configuration no matter what the system properties are. * * All setter methods in this class support chaining. For example, you can write * `new SparkConf().setMaster("local").setAppName("My app")`. * Leaf Note: 之所以可以这么优雅地设置这些属性,观察这些方法,最后调用set,并且返回了代表自身对象的this * * @param loadDefaults whether to also load values from Java system properties * * @note Once a SparkConf object is passed to Spark, it is cloned and can no longer be modified * by the user. Spark does not support modifying the configuration at runtime. */class SparkConf(loadDefaults: Boolean) extends Cloneable with Logging with Serializable {/** Leaf Note: * extends ... with ...,这里继承了多个特质,物质就类似于Java中的interface * Logging用来打日志,Serializable,序列化,分布式环境,SparkConf对象传来传去的,当然需要序列化 * 说一下Conleable,看到下面其重载了clone()方法,其实就是生成了一个配置一样的SparkConf对象 * 目的是避免多个组件共用同一个SparkConf对象时出现的并发问题,不同组件都使用,clone一个给你 * 任何地方要使用SparkConf对象,调用clone方法复制一个,十分优雅 * */ import SparkConf._ /** Create a SparkConf that loads defaults from system properties and the classpath */ /** Leaf Note: 这是一个辅助构造器,其默认也是调用主构造器,也就是类定义中需要传入参数的,它就是主构造器,这是scala的定义*/ def this() = this(true) // Leaf Note: 线程安全的map,就是真正用来保存Spark的配置属性的 private val settings = new ConcurrentHashMap[String, String]() @transient private lazy val reader: ConfigReader = { val _reader = new ConfigReader(new SparkConfigProvider(settings)) _reader.bindEnv(new ConfigProvider { override def get(key: String): Option[String] = Option(getenv(key)) }) _reader } if (loadDefaults) { loadFromSystemProperties(false) } /* Leaf Note: private[spark]中的spark,实际为org.apache.spark包,表示该方法只能在该包下使用 */ private[spark] def loadFromSystemProperties(silent: Boolean): SparkConf = { // Load any spark.* system properties for ((key, value) <- Utils.getSystemProperties if key.startsWith("spark.")) { set(key, value, silent) } this } /** Set a configuration variable. */ def set(key: String, value: String): SparkConf = { set(key, value, false) } /** Leaf Note: silent为false的话,就是不安静了,设置为false,对于一些过时的配置,那么就会给出warning */ private[spark] def set(key: String, value: String, silent: Boolean): SparkConf = { if (key == null) { throw new NullPointerException("null key") } if (value == null) { throw new NullPointerException("null value for " + key) } if (!silent) { logDeprecationWarning(key) } settings.put(key, value) this } private[spark] def set[T](entry: ConfigEntry[T], value: T): SparkConf = { set(entry.key, entry.stringConverter(value)) this } private[spark] def set[T](entry: OptionalConfigEntry[T], value: T): SparkConf = { set(entry.key, entry.rawStringConverter(value)) this } /** * The master URL to connect to, such as "local" to run locally with one thread, "local[4]" to * run locally with 4 cores, or "spark://master:7077" to run on a Spark standalone cluster. */ def setMaster(master: String): SparkConf = { set("spark.master", master) } /** Set a name for your application. Shown in the Spark web UI. */ def setAppName(name: String): SparkConf = { set("spark.app.name", name) } /** Set JAR files to distribute to the cluster. */ def setJars(jars: Seq[String]): SparkConf = { for (jar <- jars if (jar == null)) logWarning("null jar passed to SparkContext constructor") set("spark.jars", jars.filter(_ != null).mkString(",")) } /** Set JAR files to distribute to the cluster. (Java-friendly version.) */ def setJars(jars: Array[String]): SparkConf = { setJars(jars.toSeq) } /** * Set an environment variable to be used when launching executors for this application. * These variables are stored as properties of the form spark.executorEnv.VAR_NAME * (for example spark.executorEnv.PATH) but this method makes them easier to set. */ def setExecutorEnv(variable: String, value: String): SparkConf = { set("spark.executorEnv." + variable, value) } /** * Set multiple environment variables to be used when launching executors. * These variables are stored as properties of the form spark.executorEnv.VAR_NAME * (for example spark.executorEnv.PATH) but this method makes them easier to set. */ def setExecutorEnv(variables: Seq[(String, String)]): SparkConf = { for ((k, v) <- variables) { setExecutorEnv(k, v) } this } /** * Set multiple environment variables to be used when launching executors. * (Java-friendly version.) */ def setExecutorEnv(variables: Array[(String, String)]): SparkConf = { setExecutorEnv(variables.toSeq) } /** * Set the location where Spark is installed on worker nodes. */ def setSparkHome(home: String): SparkConf = { set("spark.home", home) } /** Set multiple parameters together */ def setAll(settings: Traversable[(String, String)]): SparkConf = { settings.foreach { case (k, v) => set(k, v) } this } /** Set a parameter if it isn't already configured */ def setIfMissing(key: String, value: String): SparkConf = { if (settings.putIfAbsent(key, value) == null) { logDeprecationWarning(key) } this } private[spark] def setIfMissing[T](entry: ConfigEntry[T], value: T): SparkConf = { if (settings.putIfAbsent(entry.key, entry.stringConverter(value)) == null) { logDeprecationWarning(entry.key) } this } private[spark] def setIfMissing[T](entry: OptionalConfigEntry[T], value: T): SparkConf = { if (settings.putIfAbsent(entry.key, entry.rawStringConverter(value)) == null) { logDeprecationWarning(entry.key) } this } /** * Use Kryo serialization and register the given set of classes with Kryo. * If called multiple times, this will append the classes from all calls together. */ def registerKryoClasses(classes: Array[Class[_]]): SparkConf = { val allClassNames = new LinkedHashSet[String]() allClassNames ++= get("spark.kryo.classesToRegister", "").split(',').map(_.trim) .filter(!_.isEmpty) allClassNames ++= classes.map(_.getName) set("spark.kryo.classesToRegister", allClassNames.mkString(",")) set("spark.serializer", classOf[KryoSerializer].getName) this } private final val avroNamespace = "avro.schema." /** * Use Kryo serialization and register the given set of Avro schemas so that the generic * record serializer can decrease network IO */ def registerAvroSchemas(schemas: Schema*): SparkConf = { for (schema <- schemas) { set(avroNamespace + SchemaNormalization.parsingFingerprint64(schema), schema.toString) } this } /** Gets all the avro schemas in the configuration used in the generic Avro record serializer */ def getAvroSchema: Map[Long, String] = { getAll.filter { case (k, v) => k.startsWith(avroNamespace) } .map { case (k, v) => (k.substring(avroNamespace.length).toLong, v) } .toMap } /** Remove a parameter from the configuration */ def remove(key: String): SparkConf = { settings.remove(key) this } private[spark] def remove(entry: ConfigEntry[_]): SparkConf = { remove(entry.key) } /** Get a parameter; throws a NoSuchElementException if it's not set */ def get(key: String): String = { getOption(key).getOrElse(throw new NoSuchElementException(key)) } /** Get a parameter, falling back to a default if not set */ def get(key: String, defaultValue: String): String = { getOption(key).getOrElse(defaultValue) } /** * Retrieves the value of a pre-defined configuration entry. * * - This is an internal Spark API. * - The return type if defined by the configuration entry. * - This will throw an exception is the config is not optional and the value is not set. */ private[spark] def get[T](entry: ConfigEntry[T]): T = { entry.readFrom(reader) } /** * Get a time parameter as seconds; throws a NoSuchElementException if it's not set. If no * suffix is provided then seconds are assumed. * @throws java.util.NoSuchElementException */ def getTimeAsSeconds(key: String): Long = { Utils.timeStringAsSeconds(get(key)) } /** * Get a time parameter as seconds, falling back to a default if not set. If no * suffix is provided then seconds are assumed. */ def getTimeAsSeconds(key: String, defaultValue: String): Long = { Utils.timeStringAsSeconds(get(key, defaultValue)) } /** * Get a time parameter as milliseconds; throws a NoSuchElementException if it's not set. If no * suffix is provided then milliseconds are assumed. * @throws java.util.NoSuchElementException */ def getTimeAsMs(key: String): Long = { Utils.timeStringAsMs(get(key)) } /** * Get a time parameter as milliseconds, falling back to a default if not set. If no * suffix is provided then milliseconds are assumed. */ def getTimeAsMs(key: String, defaultValue: String): Long = { Utils.timeStringAsMs(get(key, defaultValue)) } /** * Get a size parameter as bytes; throws a NoSuchElementException if it's not set. If no * suffix is provided then bytes are assumed. * @throws java.util.NoSuchElementException */ def getSizeAsBytes(key: String): Long = { Utils.byteStringAsBytes(get(key)) } /** * Get a size parameter as bytes, falling back to a default if not set. If no * suffix is provided then bytes are assumed. */ def getSizeAsBytes(key: String, defaultValue: String): Long = { Utils.byteStringAsBytes(get(key, defaultValue)) } /** * Get a size parameter as bytes, falling back to a default if not set. */ def getSizeAsBytes(key: String, defaultValue: Long): Long = { Utils.byteStringAsBytes(get(key, defaultValue + "B")) } /** * Get a size parameter as Kibibytes; throws a NoSuchElementException if it's not set. If no * suffix is provided then Kibibytes are assumed. * @throws java.util.NoSuchElementException */ def getSizeAsKb(key: String): Long = { Utils.byteStringAsKb(get(key)) } /** * Get a size parameter as Kibibytes, falling back to a default if not set. If no * suffix is provided then Kibibytes are assumed. */ def getSizeAsKb(key: String, defaultValue: String): Long = { Utils.byteStringAsKb(get(key, defaultValue)) } /** * Get a size parameter as Mebibytes; throws a NoSuchElementException if it's not set. If no * suffix is provided then Mebibytes are assumed. * @throws java.util.NoSuchElementException */ def getSizeAsMb(key: String): Long = { Utils.byteStringAsMb(get(key)) } /** * Get a size parameter as Mebibytes, falling back to a default if not set. If no * suffix is provided then Mebibytes are assumed. */ def getSizeAsMb(key: String, defaultValue: String): Long = { Utils.byteStringAsMb(get(key, defaultValue)) } /** * Get a size parameter as Gibibytes; throws a NoSuchElementException if it's not set. If no * suffix is provided then Gibibytes are assumed. * @throws java.util.NoSuchElementException */ def getSizeAsGb(key: String): Long = { Utils.byteStringAsGb(get(key)) } /** * Get a size parameter as Gibibytes, falling back to a default if not set. If no * suffix is provided then Gibibytes are assumed. */ def getSizeAsGb(key: String, defaultValue: String): Long = { Utils.byteStringAsGb(get(key, defaultValue)) } /** Get a parameter as an Option */ def getOption(key: String): Option[String] = { Option(settings.get(key)).orElse(getDeprecatedConfig(key, this)) } /** Get all parameters as a list of pairs */ def getAll: Array[(String, String)] = { settings.entrySet().asScala.map(x => (x.getKey, x.getValue)).toArray } /** * Get all parameters that start with `prefix` */ def getAllWithPrefix(prefix: String): Array[(String, String)] = { getAll.filter { case (k, v) => k.startsWith(prefix) } .map { case (k, v) => (k.substring(prefix.length), v) } } /** Get a parameter as an integer, falling back to a default if not set */ def getInt(key: String, defaultValue: Int): Int = { getOption(key).map(_.toInt).getOrElse(defaultValue) } /** Get a parameter as a long, falling back to a default if not set */ def getLong(key: String, defaultValue: Long): Long = { getOption(key).map(_.toLong).getOrElse(defaultValue) } /** Get a parameter as a double, falling back to a default if not set */ def getDouble(key: String, defaultValue: Double): Double = { getOption(key).map(_.toDouble).getOrElse(defaultValue) } /** Get a parameter as a boolean, falling back to a default if not set */ def getBoolean(key: String, defaultValue: Boolean): Boolean = { getOption(key).map(_.toBoolean).getOrElse(defaultValue) } /** Get all executor environment variables set on this SparkConf */ def getExecutorEnv: Seq[(String, String)] = { getAllWithPrefix("spark.executorEnv.") } /** * Returns the Spark application id, valid in the Driver after TaskScheduler registration and * from the start in the Executor. */ def getAppId: String = get("spark.app.id") /** Does the configuration contain a given parameter? */ def contains(key: String): Boolean = { settings.containsKey(key) || configsWithAlternatives.get(key).toSeq.flatten.exists { alt => contains(alt.key) } } private[spark] def contains(entry: ConfigEntry[_]): Boolean = contains(entry.key) /** Copy this object */ /** 克隆本SparkConf对象中的配置到一个新的SparkConf对象中 */ override def clone: SparkConf = { val cloned = new SparkConf(false) settings.entrySet().asScala.foreach { e => cloned.set(e.getKey(), e.getValue(), true) } cloned } /** * By using this instead of System.getenv(), environment variables can be mocked * in unit tests. */ private[spark] def getenv(name: String): String = System.getenv(name) /** * Checks for illegal or deprecated config settings. Throws an exception for the former. Not * idempotent - may mutate this conf object to convert deprecated settings to supported ones. */ private[spark] def validateSettings() { if (contains("spark.local.dir")) { val msg = "In Spark 1.0 and later spark.local.dir will be overridden by the value set by " + "the cluster manager (via SPARK_LOCAL_DIRS in mesos/standalone and LOCAL_DIRS in YARN)." logWarning(msg) } val executorOptsKey = "spark.executor.extraJavaOptions" val executorClasspathKey = "spark.executor.extraClassPath" val driverOptsKey = "spark.driver.extraJavaOptions" val driverClassPathKey = "spark.driver.extraClassPath" val driverLibraryPathKey = "spark.driver.extraLibraryPath" val sparkExecutorInstances = "spark.executor.instances" // Used by Yarn in 1.1 and before sys.props.get("spark.driver.libraryPath").foreach { value => val warning = s""" |spark.driver.libraryPath was detected (set to '$value'). |This is deprecated in Spark 1.2+. | |Please instead use: $driverLibraryPathKey """.stripMargin logWarning(warning) } // Validate spark.executor.extraJavaOptions getOption(executorOptsKey).foreach { javaOpts => if (javaOpts.contains("-Dspark")) { val msg = s"$executorOptsKey is not allowed to set Spark options (was '$javaOpts'). " + "Set them directly on a SparkConf or in a properties file when using ./bin/spark-submit." throw new Exception(msg) } if (javaOpts.contains("-Xmx")) { val msg = s"$executorOptsKey is not allowed to specify max heap memory settings " + s"(was '$javaOpts'). Use spark.executor.memory instead." throw new Exception(msg) } } // Validate memory fractions val deprecatedMemoryKeys = Seq( "spark.storage.memoryFraction", "spark.shuffle.memoryFraction", "spark.shuffle.safetyFraction", "spark.storage.unrollFraction", "spark.storage.safetyFraction") val memoryKeys = Seq( "spark.memory.fraction", "spark.memory.storageFraction") ++ deprecatedMemoryKeys for (key <- memoryKeys) { val value = getDouble(key, 0.5) if (value > 1 || value < 0) { throw new IllegalArgumentException(s"$key should be between 0 and 1 (was '$value').") } } // Warn against deprecated memory fractions (unless legacy memory management mode is enabled) val legacyMemoryManagementKey = "spark.memory.useLegacyMode" val legacyMemoryManagement = getBoolean(legacyMemoryManagementKey, false) if (!legacyMemoryManagement) { val keyset = deprecatedMemoryKeys.toSet val detected = settings.keys().asScala.filter(keyset.contains) if (detected.nonEmpty) { logWarning("Detected deprecated memory fraction settings: " + detected.mkString("[", ", ", "]") + ". As of Spark 1.6, execution and storage " + "memory management are unified. All memory fractions used in the old model are " + "now deprecated and no longer read. If you wish to use the old memory management, " + s"you may explicitly enable `$legacyMemoryManagementKey` (not recommended).") } } // Check for legacy configs sys.env.get("SPARK_JAVA_OPTS").foreach { value => val warning = s""" |SPARK_JAVA_OPTS was detected (set to '$value'). |This is deprecated in Spark 1.0+. | |Please instead use: | - ./spark-submit with conf/spark-defaults.conf to set defaults for an application | - ./spark-submit with --driver-java-options to set -X options for a driver | - spark.executor.extraJavaOptions to set -X options for executors | - SPARK_DAEMON_JAVA_OPTS to set java options for standalone daemons (master or worker) """.stripMargin logWarning(warning) for (key <- Seq(executorOptsKey, driverOptsKey)) { if (getOption(key).isDefined) { throw new SparkException(s"Found both $key and SPARK_JAVA_OPTS. Use only the former.") } else { logWarning(s"Setting '$key' to '$value' as a work-around.") set(key, value) } } } sys.env.get("SPARK_CLASSPATH").foreach { value => val warning = s""" |SPARK_CLASSPATH was detected (set to '$value'). |This is deprecated in Spark 1.0+. | |Please instead use: | - ./spark-submit with --driver-class-path to augment the driver classpath | - spark.executor.extraClassPath to augment the executor classpath """.stripMargin logWarning(warning) for (key <- Seq(executorClasspathKey, driverClassPathKey)) { if (getOption(key).isDefined) { throw new SparkException(s"Found both $key and SPARK_CLASSPATH. Use only the former.") } else { logWarning(s"Setting '$key' to '$value' as a work-around.") set(key, value) } } } if (!contains(sparkExecutorInstances)) { sys.env.get("SPARK_WORKER_INSTANCES").foreach { value => val warning = s""" |SPARK_WORKER_INSTANCES was detected (set to '$value'). |This is deprecated in Spark 1.0+. | |Please instead use: | - ./spark-submit with --num-executors to specify the number of executors | - Or set SPARK_EXECUTOR_INSTANCES | - spark.executor.instances to configure the number of instances in the spark config. """.stripMargin logWarning(warning) set("spark.executor.instances", value) } } if (contains("spark.master") && get("spark.master").startsWith("yarn-")) { val warning = s"spark.master ${get("spark.master")} is deprecated in Spark 2.0+, please " + "instead use \"yarn\" with specified deploy mode." get("spark.master") match { case "yarn-cluster" => logWarning(warning) set("spark.master", "yarn") set("spark.submit.deployMode", "cluster") case "yarn-client" => logWarning(warning) set("spark.master", "yarn") set("spark.submit.deployMode", "client") case _ => // Any other unexpected master will be checked when creating scheduler backend. } } if (contains("spark.submit.deployMode")) { get("spark.submit.deployMode") match { case "cluster" | "client" => case e => throw new SparkException("spark.submit.deployMode can only be \"cluster\" or " + "\"client\".") } } } /** * Return a string listing all keys and values, one per line. This is useful to print the * configuration out for debugging. */ def toDebugString: String = { getAll.sorted.map{case (k, v) => k + "=" + v}.mkString("\n") }}private[spark] object SparkConf extends Logging { /** * Maps deprecated config keys to information about the deprecation. * * The extra information is logged as a warning when the config is present in the user's * configuration. */ private val deprecatedConfigs: Map[String, DeprecatedConfig] = { val configs = Seq( DeprecatedConfig("spark.cache.class", "0.8", "The spark.cache.class property is no longer being used! Specify storage levels using " + "the RDD.persist() method instead."), DeprecatedConfig("spark.yarn.user.classpath.first", "1.3", "Please use spark.{driver,executor}.userClassPathFirst instead."), DeprecatedConfig("spark.kryoserializer.buffer.mb", "1.4", "Please use spark.kryoserializer.buffer instead. The default value for " + "spark.kryoserializer.buffer.mb was previously specified as '0.064'. Fractional values " + "are no longer accepted. To specify the equivalent now, one may use '64k'."), DeprecatedConfig("spark.rpc", "2.0", "Not used any more."), DeprecatedConfig("spark.scheduler.executorTaskBlacklistTime", "2.1.0", "Please use the new blacklisting options, spark.blacklist.*") ) Map(configs.map { cfg => (cfg.key -> cfg) } : _*) } /** * Maps a current config key to alternate keys that were used in previous version of Spark. * * The alternates are used in the order defined in this map. If deprecated configs are * present in the user's configuration, a warning is logged. */ private val configsWithAlternatives = Map[String, Seq[AlternateConfig]]( "spark.executor.userClassPathFirst" -> Seq( AlternateConfig("spark.files.userClassPathFirst", "1.3")), "spark.history.fs.update.interval" -> Seq( AlternateConfig("spark.history.fs.update.interval.seconds", "1.4"), AlternateConfig("spark.history.fs.updateInterval", "1.3"), AlternateConfig("spark.history.updateInterval", "1.3")), "spark.history.fs.cleaner.interval" -> Seq( AlternateConfig("spark.history.fs.cleaner.interval.seconds", "1.4")), "spark.history.fs.cleaner.maxAge" -> Seq( AlternateConfig("spark.history.fs.cleaner.maxAge.seconds", "1.4")), "spark.yarn.am.waitTime" -> Seq( AlternateConfig("spark.yarn.applicationMaster.waitTries", "1.3", // Translate old value to a duration, with 10s wait time per try. translation = s => s"${s.toLong * 10}s")), "spark.reducer.maxSizeInFlight" -> Seq( AlternateConfig("spark.reducer.maxMbInFlight", "1.4")), "spark.kryoserializer.buffer" -> Seq(AlternateConfig("spark.kryoserializer.buffer.mb", "1.4", translation = s => s"${(s.toDouble * 1000).toInt}k")), "spark.kryoserializer.buffer.max" -> Seq( AlternateConfig("spark.kryoserializer.buffer.max.mb", "1.4")), "spark.shuffle.file.buffer" -> Seq( AlternateConfig("spark.shuffle.file.buffer.kb", "1.4")), "spark.executor.logs.rolling.maxSize" -> Seq( AlternateConfig("spark.executor.logs.rolling.size.maxBytes", "1.4")), "spark.io.compression.snappy.blockSize" -> Seq( AlternateConfig("spark.io.compression.snappy.block.size", "1.4")), "spark.io.compression.lz4.blockSize" -> Seq( AlternateConfig("spark.io.compression.lz4.block.size", "1.4")), "spark.rpc.numRetries" -> Seq( AlternateConfig("spark.akka.num.retries", "1.4")), "spark.rpc.retry.wait" -> Seq( AlternateConfig("spark.akka.retry.wait", "1.4")), "spark.rpc.askTimeout" -> Seq( AlternateConfig("spark.akka.askTimeout", "1.4")), "spark.rpc.lookupTimeout" -> Seq( AlternateConfig("spark.akka.lookupTimeout", "1.4")), "spark.streaming.fileStream.minRememberDuration" -> Seq( AlternateConfig("spark.streaming.minRememberDuration", "1.5")), "spark.yarn.max.executor.failures" -> Seq( AlternateConfig("spark.yarn.max.worker.failures", "1.5")), "spark.memory.offHeap.enabled" -> Seq( AlternateConfig("spark.unsafe.offHeap", "1.6")), "spark.rpc.message.maxSize" -> Seq( AlternateConfig("spark.akka.frameSize", "1.6")), "spark.yarn.jars" -> Seq( AlternateConfig("spark.yarn.jar", "2.0")) ) /** * A view of `configsWithAlternatives` that makes it more efficient to look up deprecated * config keys. * * Maps the deprecated config name to a 2-tuple (new config name, alternate config info). */ private val allAlternatives: Map[String, (String, AlternateConfig)] = { configsWithAlternatives.keys.flatMap { key => configsWithAlternatives(key).map { cfg => (cfg.key -> (key -> cfg)) } }.toMap } /** * Return whether the given config should be passed to an executor on start-up. * * Certain authentication configs are required from the executor when it connects to * the scheduler, while the rest of the spark configs can be inherited from the driver later. */ def isExecutorStartupConf(name: String): Boolean = { (name.startsWith("spark.auth") && name != SecurityManager.SPARK_AUTH_SECRET_CONF) || name.startsWith("spark.ssl") || name.startsWith("spark.rpc") || isSparkPortConf(name) } /** * Return true if the given config matches either `spark.*.port` or `spark.port.*`. */ def isSparkPortConf(name: String): Boolean = { (name.startsWith("spark.") && name.endsWith(".port")) || name.startsWith("spark.port.") } /** * Looks for available deprecated keys for the given config option, and return the first * value available. */ def getDeprecatedConfig(key: String, conf: SparkConf): Option[String] = { configsWithAlternatives.get(key).flatMap { alts => alts.collectFirst { case alt if conf.contains(alt.key) => val value = conf.get(alt.key) if (alt.translation != null) alt.translation(value) else value } } } /** * Logs a warning message if the given config key is deprecated. */ def logDeprecationWarning(key: String): Unit = { deprecatedConfigs.get(key).foreach { cfg => logWarning( s"The configuration key '$key' has been deprecated as of Spark ${cfg.version} and " + s"may be removed in the future. ${cfg.deprecationMessage}") return } allAlternatives.get(key).foreach { case (newKey, cfg) => logWarning( s"The configuration key '$key' has been deprecated as of Spark ${cfg.version} and " + s"may be removed in the future. Please use the new key '$newKey' instead.") return } if (key.startsWith("spark.akka") || key.startsWith("spark.ssl.akka")) { logWarning( s"The configuration key $key is not supported any more " + s"because Spark doesn't use Akka since 2.0") } } /** * Holds information about keys that have been deprecated and do not have a replacement. * * @param key The deprecated key. * @param version Version of Spark where key was deprecated. * @param deprecationMessage Message to include in the deprecation warning. */ private case class DeprecatedConfig( key: String, version: String, deprecationMessage: String) /** * Information about an alternate configuration key that has been deprecated. * * @param key The deprecated config key. * @param version The Spark version in which the key was deprecated. * @param translation A translation function for converting old config values into new ones. */ private case class AlternateConfig( key: String, version: String, translation: String => String = null)}
转载于:https://blog.51cto.com/xpleaf/2173008